понедельник, 18 мая 2020 г.

Углеводы. Моносахариды



УГЛЕВОДЫ

 

Содержание:

  1.            Углеводы определение
  2.        Биологическая роль углеводов
  3.        Классификация углеводов
  4.        Номенклатура углеводов
  5.         Моносахариды
    1.         Классификация
    2.         Модели молекул
    3.             Структура важнейших моносахаридов
    4.          Физические свойства
  6.          Глюкоза
    1.                Биологическая роль глюкозы
    2.          Строение глюкозы, изомерия
    3.          Физические свойства глюкозы
    4.          Химические свойства глюкозы
      1.                 Специфические свойства
      2.                Реакции с участием полуацетального гидроксил
    5.           Получение глюкозы
    6.           Применение глюкозы
  7.          Фруктоза

 

Углеводы (сахара) — органические вещества, имеющие сходное строение и свойства, состав большинства которых отражает формула Cx(H2O)y,

где x, y ≥ 3.

 

Общеизвестные представители:

·         глюкоза (виноградный сахар) С6Н12О6,

·         сахароза (тростниковый, свекловичный сахар) С12Н22О11,

·         мальтоза (солодовый сахар) С12Н22О11,

·         лактоза (молочный сахар) С12H22O11,

·         крахмал и целлюлоза (С6Н10О5)n.

 

Учебный фильм «Углеводы»



Известны также соединения, относящиеся к углеводам, состав которых не соответствует общей формуле, например, сахар рамноза С6Н12О5

 

В то же время есть вещества, соответствующее общей формуле углеводов, но не проявляющие их свойства (например, природный шестиатомный спирт инозит С6Н12О6).

 

Углеводы объединяют разнообразные соединения – от низкомолекулярных, состоящих из некоторых атомов (х=3), до полимеров [СxН2Оy]n с молекулярной массой в несколько миллионов (n=10000).

 

БИОЛОГИЧЕСКАЯ РОЛЬ УГЛЕВОДОВ

Углеводы содержатся в клетках растительных и животных организмов и по массе составляют основную часть органического вещества на Земле. Эти соединения образуются растениями в процессе фотосинтеза из углекислого газа и воды и при участии хлорофилла.

Животные организмы не способны синтезировать углеводы и получают их с растительной пищей. Углеводы составляют значительную долю пищи млекопитающих.

Фотосинтез можно рассматривать как процесс восстановления СО2 с использованием солнечной энергии:



В процессе дыхания происходит окисление углеводов, в результате чего выделяется энергия, необходимая для функционирования живых организмов:



Видеофильм «Механизм фотосинтеза»


Содержание углеводов в растениях составляет до 80% массы сухого вещества, в организмах человека и животных – до 20%. Они играют важную роль в физиологических процессах. Пища человека состоит примерно на 70% из углеводов.

Функции углеводов в живых организмах разнообразны.

Они служат источником запасной энергии (в растениях – крахмал, в животных организмах – гликоген). В растительных организмах углеводы являются основой клеточных мембран. В качестве одного из структурных компонентов остатки углеводов входят в состав нуклеиновых кислот.

 

КЛАССИФИКАЦИЯ УГЛЕВОДОВ

Все углеводы по числу входящих в их молекулы структурных единиц (остатков простейших углеводов) и способности к гидролизу можно разделить на две группы: простые углеводыили моносахариды, и сложные углеводы (олигосахариды и полисахариды).

Простые углеводы (моносахариды) – это простейшие углеводы, не гидролизующиеся с образованием более простых углеводов.

Сложные углеводы (олигосахариды и полисахариды) – это углеводы, молекулы которых состоят из двух или большего числа остатков моносахаридов и разлагаются на эти моносахариды при гидролизе.



Моносахариды по числу атомов углерода подразделяют на тетрозы (С4Н8О4), пентозы (С5Н10О5),  и гексозы (С6Н12О6). Важнейшие пентозы -  рибоза и дезоксирибоза, гексозы – глюкоза и фруктоза.

 

Олигосахариды (продукты конденсации двух или нескольких молекул моносахаридов). Среди олигосахаридов наибольшее значение имеют дисахариды (диозы) – продукты конденсации двух молекул моносахаридов (например, сахароза — С12Н22О11, при гидролизе превращается в смесь глюкозы и фруктозы).

Полисахариды (крахмал, целлюлоза) образованы большим числом молекул моносахаридов.

Олиго- и полисахариды расщепляются при гидролизе до моносахаридов. В молекулах олигосахаридов содержится от 2 до 10 моносахаридных остатков, в полисахаридах — от 10 до 3000—5000.



Раффиноза – содержится в сахарной свекле.

Гликоген – животный крахмал.

 

НОМЕНКЛАТУРА УГЛЕВОДОВ

Для большинства углеводов приняты тривиальные названия с суффиксом –оза (глюкоза, рибоза, сахароза, целлюлоза и т.п.).

 

МОНОСАХАРИДЫ

 

Моносахариды (монозы) – гетерофункциональные соединения, в состав их молекул входит одна карбонильная группа (альдегидная или кетонная) и несколько гидроксильных групп.

 

Т.е. моносахариды являются альдегидоспиртами или кетоспиртами. Следовательно, углеводы являются полигидроксикарбонильными соединениями (полигидроксиальдегиды или полигидроксикетоны).


1. В зависимости от входящей функциональной группы моносахариды делятся:



2. По числу углеродных атомов в молекуле:


Учебный фильм «Углеводы. Моносахариды»


Альдозы и кетозы с одинаковым числом атомов углерода изомерны между собой.

 

В природе наиболее распространены моносахариды, в молекулах которых содержится пять углеродных атомов (пентозы) или шесть (гексозы).

  

Например:



возможно и такое обозначение глюкозы и фруктозы:


Из этих формул видно, что моносахариды – это полигидроксиальдегиды (альдозы, альдегидоспирты) или полигидроксикетоны (кетозы, кетоноспирты).

Рибоза и глюкоза – альдозы (альдопентоза и альдогексоза), фруктоза – кетоза (кетогексоза).

 

Самые распространенные моносахариды – глюкоза и фруктоза, имеющие общую формулу (СН2О)6.


МОДЕЛИ МОЛЕКУЛ



Нумерация цепи начинается с атома углерода альдегидной группы (в случае альдоз) или с крайнего атома углерода, к которому ближе располагается кетогруппа (в случае кетоз):


Моносахариды обладают восстанавливающими свойствами из-за наличия гидроксильных групп: реакция «серебряного зеркала» (осаждение серебра из раствора соли) и реакция Фелинга (осаждение меди из растовра медного купороса).

 

 

СТРУКТУРА ВАЖНЕЙШИХ МОНОСАХАРИДОВ



КЛАССИФИКАЦИЯ МОНОСАХАРИДОВ



ФИЗИЧЕСКИЕ СВОЙСТВА 

Моносахариды представляют собой бесцветные кристаллические вещества, сладкие на вкус, хорошо растворимые в воде, нерастворимые в эфире, имеющие невысокие температуры плавления. Сладость моносахаридов различна. Например, фруктоза слаще глюкозы в три раза.


ГЛЮКОЗА

 

Глюкоза С6Н12O6 представляет собой наиболее распространенный и наиболее важный моносахарид — гексозу. Она является структурной единицей большинства пищевых ди- и полисахаридов.  

 

БИОЛОГИЧЕСКАЯ РОЛЬ ГЛЮКОЗЫ

Глюкоза образуется в природе в процессе фотосинтеза, протекающего под действием солнечного света в листьях растений:

 

6CO2 + 6H2O C6H12O6 + 6O2

 

Глюкоза – ценное питательное вещество. Она является обязательным компонентом крови и тканей животных и непосредственным источником энергии для клеточных реакций. При окислении ее в тканях освобождается энергия, необходимая для нормальной жизнедеятельности организмов:

 

C6H12O6 + 6O2 → 6H2O + 6CO2 + 2920 кДж

 

Глюкоза – необходимый компонент обмена углеводов. Она необходима для образования в печени гликогена (запасной углевод человека и животных).

Уровень содержания глюкозы в крови человека постоянен. Во всем объеме крови взрослого человека содержится 5-6 г глюкозы. Такого количества достаточно для покрытия энергетических затрат организма в течение 15 минут его жизнедеятельности.

При снижении ее уровня в крови или высокой концентрации и невозможности использования, как это происходит при сахарном диабете, наступает сонливость, может наступить потеря сознания (гипогликемическая кома).

 

СТРОЕНИЕ ГЛЮКОЗЫ. ИЗОМЕРИЯ

Молекулярная формула глюкозы С6Н12О6.

В молекуле глюкозы присутствуют альдегидная и гидроксильная группы.

Моносахаридам свойственна также иная структура, возникающая в результате внутримолекулярной реакции между карбонильной группой с одним из спиртовых гидроксидов. Такая реакция внутри одной молекулы сопровождается ее циклизацией.


Известно, что наиболее устойчивыми являются 5-ти и 6-ти членные циклы. Поэтому, как правило, происходит взаимодействие карбонильной группы с гидроксилом при 4-м или 5-м углеродном атоме.

В результате взаимодействия карбонильной группы с одной из гидроксильных глюкоза может существовать в двух формах: открытой цепной и циклической.

 

Образование циклической формы глюкозы при взаимодействии альдегидной группы и спиртового гидроксила при С5 приводит к появлению нового гидроксила у С1 называемого полуацетальным (крайний правый). Он отличается от других большей реакционной способностью, а циклическую форму в этом случае называют также полуацетальной.

В кристаллическом состоянии глюкоза находится в циклической форме, а при растворении частично переходит в открытую и устанавливается состояние подвижного равновесия.

 

Например, в водном растворе глюкозы существуют следующие структуры:



Подвижное равновесие между взаимопревращающимися структурными изомерами (таутомерами) называется таутомерией. Данный случай относится к цикло-цепной таутомерии моносахаридов.

Циклические α- и β-формы глюкозы представляют собой пространственные изомеры, отличающиеся положением полуацетального гидроксила относительно плоскости кольца.

В α-глюкозе этот гидроксил находится в транс-положении к гидроксиметильной группе -СН2ОН, в β-глюкозе – в цис-положении.

С учетом пространственного строения шестичленного цикла

формулы этих изомеров имеют вид:


Аналогичные процессы происходят и в растворе рибозы:



В твердом состоянии глюкоза имеет циклическое строение.

 

Обычная кристаллическая глюкоза – это α-форма. В растворе более устойчива β-форма (при установившемся равновесии на неё приходится более 60% молекул).

Доля альдегидной формы в равновесии незначительна. Это объясняет отсутствие взаимодействия с фуксинсернистой кислотой (качественная реакция альдегидов).

 

Явление существования веществ в нескольких взаимопревращающихся изомерных формах было названо А. М. Бутлеровым динамической изомерией. Позднее это явление было названо таутомерией.

 

Для глюкозы кроме явления таутомерии характерны структурная изомерия с кетонами (глюкоза и фруктоза – структурные межклассовые изомеры) и оптическая изомерия:



Видеофильм «Глюкоза и ее изомеры»


ФИЗИЧЕСКИЕ СВОЙСТВА ГЛЮКОЗЫ

Глюкоза – бесцветное кристаллическое вещество, хорошо растворимое в воде, сладкое на вкус (лат. «глюкос» – сладкий).

Она содержится в растительных и живых организмах, особенно много ее содержится в виноградном соке (отсюда и название – виноградный сахар), в спелых фруктах и ягодах. Мед в основном состоит из смеси глюкозы с фруктозой.

В крови человека ее содержится примерно 0,1 %

 

ХИМИЧЕСКИЕ СВОЙСТВА ГЛЮКОЗЫ

Химические свойства глюкозы, как и других альдоз, обусловлены присутствием в ее молекуле:

а) альдегидной группы;

б) спиртовых гидроксилов;

в) полуацетального (гликозидного) гидроксила.

 

СПЕЦИФИЧЕСКИЕ СВОЙСТВА

1. Брожение (ферментация) моносахаридов

Важнейшим свойством моносахаридов является их ферментативное брожение, т.е. распад молекул на осколки под действием различных ферментов. Брожению подвергаются в основном гексозы в присутствии ферментов, выделяемых дрожжевыми грибками, бактериями или плесневыми грибками. В зависимости от природы действующего фермента различают реакции следующих видов:

 

1) Спиртовое брожение




2) Молочнокислое брожение

3) Маслянокислое брожение

4) Лимоннокислое брожение


РЕАКЦИИ С УЧАСТИЕМ АЛЬДЕГИДНОЙ ГРУППЫ ГЛЮКОЗЫ (СВОЙСТВА ГЛЮКОЗЫ КАК АЛЬДЕГИДА)

1. Восстановление (гидрирование) с образованием многоатомного спирта

В ходе этой реакции карбонильная группа восстанавливается и образуется новая спиртовая группа:


Cорбит содержится во многих ягодах и фруктах, особенно много сорбита в плодах рябины.

 

2. Окисление

1) Окисление бромной водой 

  


Качественные реакции на глюкозу как альдегид!

Протекающие в щелочной среде при нагревании реакции с аммиачным раствором Ag2O (реакция серебряного зеркала») и с гидроксидом меди (II) Cu (OH)2 приводят к образованию смеси продуктов окисления глюкозы.

 

2) Реакция серебряного зеркала


Соль этой кислоты – глюконат кальция – известное лекарственное средство.

 

3) Окисление гидроксидом меди (II)     


В ходе этих реакций альдегидная группа – СНО окисляется до карбоксильной группы – СООН.

Реакции глюкозы с участием гидроксильных групп (свойства глюкозы как многоатомного спирта)

4. Взаимодействие с Cu (ОН)2 с образованием глюконата меди (II)

Качественная реакция на глюкозу как многоатомный спирт!

Подобно этиленгликолю и глицерину, глюкоза способна растворять гидроксид меди (II), образуя растворимое комплексное соединение синего цвета:


Прильём к раствору глюкозы несколько капель раствора сульфата меди (II) и раствор щелочи. Осадка гидроксида меди не образуется. Раствор окрашивается в ярко-синий цвет.

В данном случае глюкоза растворяет гидроксид меди (II) и ведет себя как многоатомный спирт, образуя комплексное соединение. 

 

5. Взаимодействие с галогеналканами с образованием простых эфиров

Являясь многоатомным спиртом, глюкоза образует простые эфиры:


Реакция происходит в присутствии Ag2O для связывания выделяющегося при реакции НI.

 

6. Взаимодействие с карбоновыми кислотами или их ангидридами с образованием сложных эфиров.

 

Например, с ангидридом уксусной кислоты:



РЕАКЦИИ С УЧАСТИЕМ ПОЛУАЦЕТАЛЬНОГО ГИДРОКСИЛА

1. Взаимодействие со спиртами с образованием гликозидов

Гликозиды – это производные углеводов, у которых гликозидный гидроксил замещен на остаток какого-либо органического соединения.

Содержащийся в циклических формах глюкозы полуацетальный (гликозидный) гидроксил является очень реакционноспособным и легко замещается на остатки различных органических соединений.

В случае глюкозы гликозиды называются глюкозидами. Связь между углеводным остатком и остатком другого компонента называется гликозидной.

Гликозиды построены по типу простых эфиров.

При действии метилового спирта в присутствии газообразного хлористого водорода атом водорода гликозидного гидроксила замещается на метильную группу:


В данных условиях в реакцию вступает только гликозидный гидроксил, спиртовые гидроксильные группы в реакции не участвуют.

Гликозиды играют чрезвычайно важную роль в растительном и животном мире. Существует огромное число природных гликозидов, в молекулах которых с атомом С (1) глюкозы остатки самых различных соединений.

Реакции окисления

Более сильный окислитель – азотная кислота НNO3 – окисляет глюкозу до двухосновной глюкаровой (сахарной) кислоты:

В ходе этой реакции и альдегидная группа – СНО и первичная спиртовая группа — СН2ОН окисляются до карбоксильных – СООН.

Видеофильм «Качественные реакции на глюкозу»



ПОЛУЧЕНИЕ ГЛЮКОЗЫ

Основным способом получения моносахаридов, имеющим практическое значения, является гидролиз ди- и полисахароидов.

 

1. Гидролиз полисахаридов

Глюкозу чаще всего получают гидролизом крахмала (промышленный способ получения):


2. Гидролиз дисахаридов


3. Альдольная конденсация формальдегида (реакция А.М. Бутлерова)

Первый синтез углеводов из формальдегида в щелочной среде осуществил А.М. Бутлеров в 1861 году.


4. Фотосинтез

В природе глюкоза образуется в растениях в результате фотосинтеза:


ПРИМЕНЕНИЕ ГЛЮКОЗЫ

Глюкоза применяется в медицине в качестве укрепляющего лечебного средства при явлениях сердечной слабости, шоке, для приготовления лечебных препаратов, консервирования крови, внутривенного вливания, при самых разнообразных заболеваниях (особенно при истощении организма).

Широко применяют глюкозу в кондитерском деле (изготовление мармелада, карамели, пряников и т. д.)

Глюкоза находит широкое применение в текстильной промышленности при крашении и печатании рисунков.

Глюкоза применяется в качестве исходного продукта при производстве аскорбиновых и глюконовых кислот, для синтеза ряда производных сахаров и т.д.

Она применяется в производстве зеркал и елочных игрушек (серебрение).

В микробиологической промышленности как питательная среда для получения кормовых дрожжей.

Большое значение имеют процессы брожения глюкозы. Так, например, при квашении капусты, огурцов, молока происходит молочнокислое брожение глюкозы, так же как и при силосовании кормов. Если подвергаемая силосованию масса недостаточно уплотнена, то под влиянием проникшего воздуха происходит маслянокислое брожение и корм становится непригоден к применению.

На практике используется также спиртовое брожение глюкозы, например при производстве пива.



ФРУКТОЗА

Фруктоза (фруктовый сахар) С6Н12О6 – изомер глюкозы. Фруктоза в свободном виде содержится в фруктах, меде. Входит в состав сахарозы и полисахарида инсулина. Она слаще глюкозы и сахарозы. Ценный питательный продукт.

В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом.

Как и глюкоза, она может существовать в линейной и циклических формах. В линейной форме фруктоза представляет собой кетоноспирт с пятью гидроксильными группами.

Строение ее молекулы можно выразить формулой:


Имея гидроксильные группы, фруктоза, как и глюкоза, способна образовывать сахараты и сложные эфиры. Однако вследствие отсутствия альдегидной группы она в меньшей степени подвержена окислению, чем глюкоза. Фруктоза, также как и глюкоза, не подвергается гидролизу.

Фруктоза вступает во все реакции многоатомных спиртов, но, в отличие от глюкозы, не реагирует с аммиачным раствором оксида серебра.



    Choose :
  • OR
  • To comment